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Abstract

This paper deals with the theory of two-phase laminar flow in a heated microchannels. The main ob-
jective of the work is to study the thermohydrodynamic characteristics of a two-phase capillary flow with
phase change at the meniscus. A quasi-one-dimensional model is proposed for such a flow. It takes into
account the principal characteristics of the phenomenon, namely, the effects of the inertia, pressure, gravity,
friction forces and capillary pressure due to the curvature of the interface surface, as well as the thermal and
dynamical interactions of the liquid and vapor phases. To describe the flow outside of the meniscus, in the
domains of the pure liquid or vapor, the one-dimensional mass, momentum and energy equations are used.
The possible states of the flow are considered, and the domains of steady and unsteady states are outlined.
An equation for stationary two-phase flow regimes in heated microchannel is derived. This equation is
applied to classify the operating parameters, corresponding to various types of flow.
� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

One possible way to enhance heat transfer in cooling systems of electronic devices, with high
power densities, is phase change of the coolant in microchannels. The possibility enchance heat
transfer motivated a number of studies of two-phase boiling heat transfer in mini- and micro-
channels (Bowers and Mudawar, 1994; Morijama and Inoue, 1992; Landerman, 1994; Peng et al.,
1996; Peng and Wang, 1998).

Two-phase flows in the microchannels with an evaporating meniscus, which separates the re-
gions of liquid and vapor, have been considered by Khrustalev and Faghri (1995) and Peles et al.
(1998, 2000). In the latter a quasi-one-dimensional model was used to analyze the thermohy-
drodynamic characteristics of the flow in a heated capillary, with a distinct interface. This model
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takes into account the multistage character of the process, as well as the effect of capillary, friction
and gravity forces on the flow development. The theoretical and experimental studies of the steady
forced flow in a microchannel with evaporating meniscus were recently carried out by Peles et al.
(2001). These studies reveal the effect of a number of dimensionless parameters such as the Peclet
and Jakob numbers, dimensionless heat transfer flux, etc. on the velocity, temperature and
pressure distributions in the liquid and vapor regions. The structure of flow in heated micro-
channel is determined by number of factors: the physical properties of fluid, its velocity, heat flux
on the wall, etc. At a fixed geometry, the flow pattern in microchannel depends, mainly, on the
liquid velocity v and heat flux on the wall qw (i.e. the values of the Peclet number and dimen-
sionless heat flux) different regimes of flow take place. At large qw and small v the bubbles nu-
cleation is the dominant factor that determines the flow pattern. In the case of relatively small qw
and large v the bubbles nucluation is negligible. Under these conditions two-phase flow with
distinct meniscus which divides the region of pure liquid and pure vapor flows forms in micro-
channel. Such flow characterize small channels with high critical heat flux.

In spite of the fact that for the last decade the flow in microchannels has attracted significant
interest (Incropera, 1999; Peng and Wang, 1994; Peng et al., 1994; Ha and Peterson, 1998; Pet-
erson and Ha, 1998; Triplett et al., (Part I) 1999; Triplett et al., (Part II) 1999; Ghiaasiaan and
Abdel-Khalik, 2001) a number of important problems related to the hydrodynamic and heat
transfer in such channels, were less investigated. This particularly concerns the parametrical de-
pendence of the process, its stability, conditions of the existence of stationary flow, etc.

The main goal of the present work is to study the complex processes in heated microchannels
with evaporating meniscus. The study consists of the formulation of the problem, detailed analysis
of the influence of the physical properties of the coolant and wall heat flux on the thermal regime
of the flow, hydraulic resistance of the microchannel, as well as the efficiency of the cooling system
in the whole.

The model of the cooling system of electronic device with high power density is described in
Section 2. Section 3 deals with the mathematical formulation of the problem of laminar flow in a
heated capillary with phase change. The statement of the dimensionless variables, re-formulation
of the problem in these variables, its parametrical study, as well as the analysis of the existence of
steady and unsteady states are presented in Sections 4–6. In Section 7 we discuss the results of the
numerical calculations. The problem of efficiency of the cooling system and the condition of its
optimal functioning are presented in Section 8. The relation between the saturation parameters of
the vapor are presented in Appendix A. The integral relations are derived in Appendix B. The
analysis of the solutions of the governing system of equations is presented in Appendix C.

2. Model of cooling system

The elements of a cooling system of electronic devices are micro-heat-exchangers with ex-
tremely large surface area per unit volume, low thermal resistance and small mass. As a rule, they
are a system of parallel channels with hydraulic diameters from 10 to 103 lm with inlet and outlet
manifolds, which connect the channels (Fig. 1). A sketch of the cooling system of an electronic
device is presented in Fig. 2. It consists of a microchannel (1), condenser (2), heat exchanger (3),
pump (4) and tanks (5) and (6). The coolant is supplied into the microchannel (by the pump),
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Fig. 2. Scheme of a cooling system.

Fig. 1. Cooling element of electronic device.
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where it is heated and vaporizes on the meniscus. The vapor enters into the vapor tank (6) and
then into the condenser (2) where it condenses. The water from the condenser (2) enters into the
heat exchanger (3) and is cooled down to ambient temperature. The pressure P2:0 and temperature
T2:0 at the inlet of the microchannel can be changed by regulating the heat exchanger and the
pump.

The thermohydrodynamic characteristics of the flow in the heated microchannels depend on the
following factors: the heat flux on the wall, which determines the intensity of the vaporization, the
location of the meniscus, the difference between the inlet and outlet pressures, the capillary, mass
and friction forces which act on the liquid and the vapor.

The processes in a cooling system of electronic devices with high power density can be modeled
as follows. The coolant with temperature T2:0 and pressure P2:0 enters into the microchannel from
the tank (5) (Fig. 2). The mass capacity of the liquid in the tank (5) is large enough, therefore the
heat flux from the microchannel does not influence the coolant initial temperature. Phase change
occurs directly on the meniscus. Its position depends on the operating parameters and the physical
properties of the cooling fluid and its vapor. The upper tank (6) and the condenser (2) ensure a
given pressure of the vapor at the outlet of the microchannel.

3. Formulation of the problem

3.1. Conditions on the interfacial surface

The existence of the interfacial surface with a finite curvature causes the capillary pressure,
which determines the rising of the liquid, and its height in a stationary state (Levich, 1962). The
latter is determined by the equilibrium of the gravity and capillary forces. The situation changes
drastically, when the phase change occurs on the meniscus surface. The liquid evaporation pro-
vides for the motion of both phases and displacement of the interface. In this case the flow field is
demarcated by the interface into two domains where pure liquid or vapor flow occurs. Obviously,
that such structure of flow in microchannel is possible, when bubble nucleation within the liquid
domain is absent. The theoretical analysis by Peng et al. (1998) showed, that the critical value of
the heat flux on the wall at which the bubble nucleation is negligible depends on the physical
properties of the liquid, the microchannel diameter and is expressed by the following inequality:

qea
cpðv00 � v0Þd > qcr; ð1Þ

where qe is the latent heat of evaporation, v00 and v0 are the vapor and liquid specific volume at
saturation, a is the thermal diffusivity of the vapor, d is the microchannel diameter, c is an em-
pirical constant has order of unity. For water flow in microchannel d ¼ 10�4 m (v00 ¼ 1:673 m3/kg,
v0 ¼ 0:00104 m3/kg, qe ¼ 2:26� 106 J/kg, a ¼ 18:58� 10�8 m2/s) critical heat flux qcr is about
8� 104 W/m2 and increases with d decreasing. In experiments by Peng and Wang (1993), Peng
et al. (1994, 1996) vapor bubbles were not observed in water and methanol flows in rectangular
microchannels with cross-section ranging from 0:1� 0:3 to 0:6� 0:7 mm even when the applied
heat flux was much higher than 105 W/m2. Thus, the theoretical estimations, as well as experiment
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show that the considered model of flow in heated microchannel is valid for highly wide range of
heat fluxes, which are of practical interest.

Consider a flow of liquid coolant in a capillary where heating and evaporation occur. The
conditions on the interface are expressed by means of the equations continuity of the mass and
thermal fluxes and the equilibrium of all acting forces (Landau and Lifshiz, 1959):

X2
i¼1

ðqiviÞ � ni ¼ 0 ð2Þ

X2
i¼1

ðqivihi þ kirTiÞ � ni ¼ 0 ð3Þ

X2
i¼1

ðPi þ qivinvinÞni ¼ ðr
2 � r
1Þk þ rðr�1
1 þ r�1

2 Þn2 þrr ð4Þ

where q, v, T, h and P are the density, velocity, temperature, enthalpy and pressure; r is the
surface tension; k is the thermal conductivity; r
 is the viscous tension tensor; vin ¼ vi � ni and
rTi � ni are the normal components of the velocity vector and the interface surface temperature
gradient, respectively; r1 and r2 are the general radii of the curvature for the interface; n and k are
the normal and tangent directions; n1 ¼ �n2; i ¼ 1, 2 refer to the vapor and the liquid; the bold
letters means the vector.

Consider a system liquid/solid for which the contact angle is close to 90� (for example, the
contact angle for the system water/steel is 70� < h < 90�, (Grigoriev and Zorin, 1982). The pro-
jections of the velocity vector v on x, y, z-axes are u ¼ jvj sin h, v ¼ w ¼ jvj cos h. Since for the
surface, which is bent weakly, cos h � 1 and sin h  1 we have the following estimate u � v ¼ w.
Analogously, oT=ox � oT=oy ¼ oT=oz.

Bearing in mind these estimates and the assumptions that r ¼ const: and the fluid is incom-
pressible, Eqs. (2)–(4) transform as follows:

q1
eVV1 ¼ q2

eVV2 ð5Þ

P1 þ q1
eVV 2
1 ¼ P2 þ q2

eVV 2
2 þ fL ð6Þ

q1
eVV1h1 � k1

oT1
ox

¼ q2
eVV2h2 � k2

oT2
ox

ð7Þ

where eVVi ¼ ui � Vf is the relative velocity, Vf ¼ oxf=ot is the velocity of interface surface, fL ¼ 2r=R
is the capillary pressure, R ¼ r1 ¼ r2 is the radius of the surface curvature.

Since the coolant and its vapor are conductive fluids, T1:f ¼ T2:f ¼ Ts, where the subscripts s and
f correspond to the saturation parameters and the interface surface. The saturation pressure and
temperature are connected weakly (Appendix A), so that Ts is determined practically by the ex-
ternal pressure P1:00.

It should be stressed, that Eqs. (5) and (6) are satisfied for any values of the contact angle,
whereas Eq. (7) is correct only for h that is close to 90�.
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3.2. The flow outside of the interfacial surface

To calculate the flow fields outside of the evaporating meniscus we use the one-dimensional
model, developed by Peles et al. (1998, 2000, 2001). Assuming that the compressibility and the
energy dissipation are negligible (a flow with moderate velocities), the thermal conductivity and
viscosity are independent of the pressure and temperature, we arrive at the following system of
equations:

oqi

ot
þ oqiui

ox
¼ 0 ð8Þ

qi
oui
ot

þ qiui
oui
ox

¼ � oPi
ox

� qig �
oFi
ox

ð9Þ

qi
ohi
ot

þ qiui
ohi
ox

¼ o

ox
ki
oTi
ox

� �
þ q; ð10Þ

where F is the specific friction force, q is the specific volumetric rate of heat absorption, g is the
acceleration due to gravity.

The initial and boundary conditions for the problem are

t ¼ 0 : qi ¼ qiðxÞ; ui ¼ uiðxÞ; Ti ¼ TiðxÞ; hi ¼ hiðxÞ; xf ¼ x
f ; ð11Þ
where the x is the longitudinal coordinate; xf and x
f are the meniscus actual and initial position.

t > 0 : x ¼ 0; q2 ¼ q2:0; u2 ¼ u2:0; T2 ¼ T2:0; h2 ¼ h2:0; P2 ¼ P2:0 ð12Þ

t > 0 : x ¼ x
f ; qi ¼ qi:f ; ui ¼ ui:f ; Ti ¼ Ti:f ; hi ¼ hi:f ; Pi ¼ Pi:f ð13Þ

t > 0 : x ¼ L; q1 ¼ q1:00; u1 ¼ u1:00;
oT1
ox

¼ 0;
oh1
ox

¼ 0; P1 ¼ P1:00 ð14Þ

where L is the total length of the microchannel, subscripts 0 and 00 are related to the inlet and
outlet, respectively (Fig. 3).

The boundary conditions (12)–(14) correspond to the flow in a microchannel with a cooled inlet
and adiabatic reciever (an adiabatic pipe or tank, which is established at the exit of the micro-
channel). Note, that the boundary conditions of the problem can be formulated by another way, if
the cooling system has another construction, for example, as follows: x ¼ 0, T2 ¼ T2:0, x ¼ L,
T1 ¼ T1:00, when the inlet and outlet are cooled; x ¼ 0, oT2=ox ¼ 0, x ¼ L, T1 ¼ T1:00 in case of the
adiabatic inlet and the cooled outlet, etc.

We supplement the system of Eqs. (8)–(10) by the equations of state of the vapor and liquid

P1 ¼ q1RT1 ð15Þ

q2 ¼ q2ðT2Þ; ð16Þ
and by the equation for the vapor pressure at the interface surface.

P1:f ¼ P1:fðT1:fÞ ð17Þ
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The quasi-one-dimensional model is based on the system of Eqs. (8)–(10) with condition (5)–(7)
and describes the major features of the flow in the heated capillary. This model takes into account
the general characteristics of the process due to the curvature of the interfacial surface, as well as
the flow of the liquid and vapor, that is caused by evaporation. Similar model was successfully
used by Yuan and Prosperetti (1999) for a study on the pumping effect of growing and collapsing
bubbles in a tube. It should be noted that the actual position of the meniscus xf , as well as the
velocity of the coolant at the inlet u2:0, and the vapor temperature at the outlet of the micro-
channel T1:00 are a priori unknown. In order to determine these parameters it is necessary to
supply the system of governing equations, the integral correlations connecting inlet and outlet
parameters. They take the following form (Appendix B):

o

ot

Z xf

0

q2 dx
�

þ
Z L

xf

q1 dx
�
þ ðq1:00u1:00 � q2:0u2:0Þ ¼ 0 ð18Þ

o

ot

Z xf

0

q2u2 dx
�

þ
Z L

xf

q1u1 dx
�

¼ fL � ðq1u
2
1Þ00

�
� ðq2u

2
2Þ0
�
þ ðP2:0 � P1:00Þ

� g
Z xf

0

q2 dx
�

þ
Z L

xf

q1 dx
�
� ðF2:f þ F1:00Þ ð19Þ

o

ot

Z xf

0

q2h2 dx
�

þ
Z L

xf

q1h1 dx
�
þ ðq1u1h1Þ00
�

� ðq2u2h2Þ0
�
¼ �k2

oT2
ox

� �
0

þ qL ð20Þ

Note, that the term k1 oT1=oxð Þ00 which belongs to the boundary condition (14) is omitted on the
r.h.s. of Eq. (20).

Fig. 3. Characteristic domains in heated capillary: (a) flow of vapor, (b) flow of liquid (hold line is interphase).
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4. Non-dimensional variables

Assuming steady state in Eqs. (8)–(10) and (18)–(20), we obtain the system of equations which
determines steady regimes of the flow in the heated microchannel. Introduce values of density
q
 ¼ q2:0, velocity u
, length l
 ¼ L, temperature T
 ¼ T2:0, pressure DP
 ¼ P2:0 � P1:00 and enthalpy
qe as characteristic scales. Define the dimensionless variables as follows:

�qq ¼ q=q
; �uu ¼ u=u
; �xx ¼ x=l
; T ¼ T=T
;

�hh ¼ h=qe; c ¼ kT

q
u
qel


; P ¼ P=DP
 ð21Þ

we obtain the dimensionless equations

d�qqi�uui
d�xx

¼ 0 ð22Þ

�qqi�uui
d�uui
d�xx

¼ �Eu
dP i

d�xx
� Fr�1�qqi �

dF i

d�xx
ð23Þ

�qqi�uui
d�hhi
d�xx

¼ ci
d2T i

d�xx2
þ #; ð24Þ

where Eu ¼ DP
=q
u
2

 and Fr ¼ u2
=gL are the Euler and Froude numbers, # ¼ qL=q
u
qe,

F i ¼ Fi=q
u
2

, ci ¼ ~qqi=Pei, ~qqi ¼ cpiT
=qe, Pei ¼ u
L=ai is the Peclet number, ai ¼ ki=q
cpi.

Choose the characteristic velocity u
 so, that total heat flux on the wall is fully used for liquid
evaporation (the heating without any losses of heat: # � 1). We conclude that

u
 ¼
qL

q
qe
¼ 4qwL

dq
qe
; ð25Þ

The conditions (5)–(7) and integral relations (18)–(20) become

�qq1
eVV 1 ¼ �qq2

eVV 2 ð26Þ

EuP 1 þ �qq1ðeVV 1Þ2 ¼ EuP 2 þ �qq2ðeVV 2Þ2 þWe�1 ð27Þ

�qq1
eVV 1

�hh1 � c1
oT 1

o�xx
¼ �qq2

eVV 2
�hh2 � c2

oT 2

o�xx
ð28Þ

and

�qq1:00�uu1:00 � �qq2:0�uu2:0 ¼ 0 ð29Þ

We�1 � ð�qq1�uu
2
1Þ00

n
� ð�qq2�uu

2
2Þ0
o
þ Eu� Fr�1

Z �xxf

0

�qq2 d�xx

 
þ
Z L

�xxf

�qq1 d�xx

!
� ðF 2:f þ F 1:00Þ ¼ 0 ð30Þ

ð�qq1�uu1�hh1Þ00 � ð�qq2�uu2�hh2Þ0 ¼ �c2
oT 2

o�xx

� �
0

þ 1; ð31Þ

where We ¼ q
u
2

2R=r is the Weber number, R ¼ d=2 cos h, d is the diameter of microchannel.

The system of Eqs. (22)–(24) and relations (26)–(31) contains five dimensionless parametrical
groups Eu, Fr, We, c1 and c2, which completely determine the problem.
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5. Parametrical equation

Now let us transform the integral relations (30) and (31). For this, we write the solution of Eqs.
(22) and (24). They are (Peles et al., 2001)

�qqi�uui ¼ const: ð32Þ
T 2 ¼ Cð2Þ

1 þ #
½�xxþ ðPe�uu2:0Þ�1� þ Cð2Þ
2 expðPe�xx�uu2:0Þ ð33Þ

where

Cð2Þ
1 ¼ ð1� Cð2Þ

2 Þ � #


Pe�uu2:0
; Cð2Þ

2 ¼ ðT s � 1Þ � #
�xxf
expðPe�xxf�uu2:0Þ � 1

; #
 ¼ qe
cpT
�uu2:0

;

T s ¼ Ts=T
, Ts is the temperature on the interface.
We also determine the friction forces F2:f and F1:00. Assume that

Fi ¼
Z x00i

x0i

gi
qiu

2
i

2

dx
d

ð34Þ

and take into account that x02 ¼ 0, x002 ¼ xf , x01 ¼ xf , x001 ¼ L and gi ¼ 64=Rei (Rei ¼ uid=mi, where
mi are the kinematic viscosity) we obtain

F2:f ¼
8

r2
u2l2xf ð35Þ

F1:00 ¼
8

r2
u1l1ðL� xfÞ; ð36Þ

where r is the microchannel radius and l is the dynamic viscosity of the fluid.
Then the last term in l.h.s. of Eq. (30) turns out to be

ðF 2:f þ F 1:00Þ ¼
32

Re2
�uu2½�xxf þ m12ðL� �xxfÞ�eLL ð37Þ

where Re2 ¼ u
d=m2, m1:2 ¼ m1=m2, eLL ¼ L=d.
Since �qq1�uu1 ¼ �qq2�uu2, the l.h.s. of Eq. (31) is

ð�qq1�uu1�hh1Þ00 � ð�qq2�uu2�hh2Þ0 ¼ �qq2�uu2ð�hh1:00 � �hh2:0Þ ð38Þ
R.h.s. of Eq. (38) transforms to

�qq2�uu2ð�hh1:00 � �hh2:0Þ ¼ �qq2�uu2ð1þ J1 þ J2Þ; ð39Þ
where J1 ¼ ðh1:00 � h1:fÞ=qe, J2 ¼ ðh2:f � h2:0Þ=qe

Taking into account that at P ¼ 105 N/m2, h2:f ¼ 417:46 kJ/kg, h1:f ¼ 2675 kJ/kg and qe ¼ 2258
kJ/kg (Johnson, 1998), we obtain the following estimates for J1 and J2 : 0 < J1 < 0:02,
0 < J2 < 0:04 when 100 �C < T1 < 120 �C and 80 �C < T2 < 100 �C, respectively. This allows
one to assume that �qq2�uu2ð1þ J1 þ J2Þ � �qq2�uu2.

The integrals
R L
�xxf
�qq1 d�xx and

R �xxf
0
�qq2 d�xx in Eq. (30) have the order of magnitudesZ L

�xxf

�qq1 d�xx  ðL� �xxfÞ�qq1 ð40Þ

L.P. Yarin et al. / International Journal of Multiphase Flow 28 (2002) 1589–1616 1597



Z �xxf

0

�qq2 d�xx  �xxf �qq2 ð41Þ

Since the liquid and vapor densities are estimated as �qq2  1, �qq1  10�3, we have the following
estimate for the ratio of the integrals (41) and (40):R �xxf

0
�qq2 d�xxR L

�xxf
�qq1 d�xx

 �xxf �qq2

ðL� �xxfÞ�qq1

ð42Þ

when �xxf �qq2=ððL� �xxfÞ�qq1Þ � 1 the integral (40) is much smaller then the integral (41) and it can be
neglected. This inequality is fulfilled for the majority of physically realistic conditions when
�xxf � L� 10�3.

Taking into account the above estimates we write Eq. (30) in the following form:

�uu02 ¼
We�1 þ Eu� Fr�1�xxf

ð32=Re2ÞeLL½�xxf þ m12ðL� �xxfÞ�
ð43Þ

where �uu02 is the velocity, defined by the momentum equation.
When the heat flux on the wall qw ¼ 0, the velocity of the fluid also equals zero. Assuming in

Eq. (43) �uu02 ¼ 0, we find the height of the liquid in the microchannel with no heat transfer:

X fcap ¼
We�1 þ Eu

Fr�1
ð44Þ

In particular, when Eu ¼ 0 (pure capillary height)

X fcap ¼
Fr
We

ð45Þ

Using Eq. (44), we write Eq. (43) as

�uu02 ¼ A
1� ~xxf
B� ~xxf

; ð46Þ

where A ¼ Re=ð32FrLðm12 � 1ÞÞ, B ¼ ~llðm12=ðm12 � 1ÞÞ, ~xxf ¼ �xxf=X fcap, ~ll ¼ L=X fcap.
As can be seen from Eq. (46) the physical realistic values of the liquid velocity �uu02 P 0 corres-

pond to the confined range of the meniscus position ~xxf : 0 < ~xxf 6 1. The existence of the upper
limit in this inequality may be explained as follows: the heat flux on the wall causes liquid
evaporation and determines the displacement of the meniscus. If the heat flux increases, the rate of
evaporation also increases. The velocities of the flow of the two phases grow and the interface
surface moves towards the inlet of the microchannel. Thus, the height of the meniscus when
qw ¼ 0 is maximum and is equal to X fcap. Accordingly the dimensionless meniscus height
~xxf ¼ xf=X fcap < 1 for any value of the heat flux.

The dependence of �uu02ð~xxfÞ on different values of the parameter B is plotted in Fig. 4(a) (Ap-
pendix C, Fig. 5(a)–(c).

Taking into account Eq. (33), we transform Eq. (31) to

�uu002 ¼ 1� 1

Pe�uu002

(
þ �qq2ðT s � 1Þ�uu002 � X fcap~xxf

expðPeX fcap~xxf�uu002Þ � 1

)
; ð47Þ
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where �uu002 is the liquid velocity defined from the energy equation, �qq2 ¼ cp2T
=qe. The graphs of
�uu002ð~xxfÞ for different values of the Peclet number are plotted in Fig. 4(b).

Fig. 4. Functions �uu02ð~xxfÞ and �uu002ð~xxfÞ: (a) dependence of �uu02ð~xxfÞ upon various values of parameter B; arrow shows an

increase of parameter B, (b) dependence of �uu002ð~xxfÞ upon various values of Peclet number.
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Fig. 5. Graphical analysis of Eq. (44): (a) dependence of Lð~xxfÞ––l.h.s of Eq. (44) and Rð~xxfÞ––r.h.s of Eq. (44) at D < 0

and any �uu002 or at D < 0 and one of the conditions 0 < �uu002 <
1
2
�

ffiffiffiffi
D

p
or 1

2
þ

ffiffiffiffi
D

p
< �uu002 < 1 (D is the discriminant of the

equation �uu002 � 1þ ð1=Pe�uu002Þ ¼ 0); (1)–(3) correspond to various values of �uu002 : �uu
00
2ð1Þ > �uu002ð2Þ > �uu002ð3Þ, (b) dependence L and

R upon ~xxf at D ¼ 0, (c) dependence L and R upon ~xxf at D < 0 and 1
2
�

ffiffiffiffi
D

p
< �uu002 <

1
2
þ

ffiffiffiffi
D

p
.
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Now the momentum and energy equations for steady flow in heated capillary are

�uu02 ¼ u1ð~xxfÞ ð48Þ
�uu002 ¼ u2ð~xxfÞ ð49Þ

The stationary states correspond to parametrical equation

�uu02 ¼ �uu002; ð50Þ

which includes the following parameters: Re, Pe, Fr, m12, T s, L, ~ll and �qq2.
Eq. (50) postulates equality of the velocity due to liquid evaporation �uu002 and the one due to the

capillary and pressure forces �uu02.

6. Parametrical analysis

The solution of Eq. (50) determines the steady states of the liquid velocity, as well as the po-
sition of the meniscus in a heated microchannel. Eq. (50) can have one, two or three steady so-
lutions. This depends on the value of the parameter ~ll (in the generic case––parameter B), which
takes into account the effect of the capillary forces.

Consider the possible regimes of flow corresponding to ~ll � 1 and ~ll  1. We refer to the first
regime as ‘‘semi-filled’’, whereas the second one as ‘‘filled’’.

The change of velocity due to liquid evaporation �uu002 and influence of the capillary forces �uu02
versus ~xxf for ~ll � 1 is illustrated in Fig. 6. In the case ~ll � 1 the curves �uu02ð~xxfÞ and �uu002ð~xxfÞ have only

Fig. 6. Solution of Eq. (47) at ~ll � 1.
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one point of intersection, which determines the stationary values of �uu2 ¼ �uu2:st and ~xxf ¼ ~xxf:st. It is
not difficult to show that this point is stable. Indeed a displacement of the meniscus from its
initial position ~xxf:st to the position ~xxð
Þf:st leads to the situation, when the velocity due to the liquid
evaporation �uu002 exceeds the velocity due to capillary force �uu02. This leads to the return of the
meniscus to its initial position. If the meniscus displaces to the left, �uu02 > �uu002, this also leads to the
return of the system to its initial state.

The dependence of the stable values of the liquid velocity �uu2:st and the meniscus location ~xxf:st
upon the Peclet number and upon the parameter A are plotted in Fig. 7. The effect of the Peclet
number on �uu2:st and ~xxf:st is shown in Fig. 7(a). An increase in the Peclet number is accompanied by
an increase in �uu2:st and a decrease in ~xxf :st. The changing of �uu2:st and ~xxf:st with A is more complicated
(Fig. 7(b)). An increase of A leads to a monotonous increase of ~xxst, whereas the dependence of
�uur:stðAÞ has maximum at A > Am, Am corresponds to extremum of the curve �uu002ð~xxfÞ.

Fig. 7(b) illustrates the influence of some physical parameters on the characteristics of the
capillary flow. The dimensionless parameter A may be expressed as A ¼ ð1=128Þðqe=qwLÞðq
gd

3=
ðm1 � m2ÞÞ. Thus, an increase of the heat flux on the wall or the length of the capillary causes a
decrease of the parameter A and is accompanied by the displacement of the meniscus near the inlet
of the microchannel. When the distance ~xxf between the interface and the inlet is small enough, the
heat losses increase and the rate of evaporation u02 decreases.

The possible intersections of curves �uu02ð~xxfÞ and �uu002ð~xxfÞ at ~ll  1 are shown in Fig. 8. If the values
of A are small enough (0 < A < A1), there is only one intersection point P1. It is located on the left
branch of the curve �uu002ð~xxfÞ and corresponds to steady regime of the flow. Parameters A ¼ A1 and
A ¼ A3 confine the domain within which there are three intersection points of the curves �uu02ð~xxfÞ and
�uu002ð~xxfÞ. One of these points (intermediate) corresponds to the unstable state. The boundary values
A ¼ A1 and A ¼ A3 correspond to two intersection points, one of which is the point of touch. If
A > A3 there is only one intersection point (stable). The domains of existence of one, two or three
solutions of Eq. (50) are shown in Figs. 9 and 10 in the plane of the parameters A� Pe and the
space A� Pe� �xxf:cap. The existence of two stable regimes of flow (with fixed values of the pa-
rameters and various meniscus positions) may be explained as follows: when the meniscus is lo-
cated near the outlet, the volume of the capillary is filled by liquid. Since the length of the vapor
region is very small, the friction force due to vapor is negligible. The friction force due to liquid is
smaller than the gravity force. Thus, the capillary force is balanced mainly by the gravity force. At
the same time, dynamic equilibrium is possible, when friction forces due to vapor is dominant.
This situation appears, when the meniscus approaches the inlet of the microchannel and the
gravity force together with the friction force due to the liquid are negligible.

Thus, depending upon the values of the parameter ~ll we can classify the equilibrium states, using
parameter A (Table 1). When A ¼ A1 or A ¼ A3 the curves �uu02 and �uu002 are tangent.

The stable stationary states that correspond to two lower rows in Table 1 may be subdivided in
two groups: gravity and friction; it depends on the dominant factor. The first of them corresponds
to the conditions when the capillary force due to surface tension is compensated mainly by the
weight of liquid column, whereas the second one corresponds to the dominant role of the friction
force due to the vapor flow.

Table 1 shows that only one stationary state is possible, when the meniscus is far enough from
the outlet of the capillary. Contrary to this, when the capillary is ‘filled’, namely, the interface
surface is near the outlet, two and three stationary states are possible. From the physical point of
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view, these phenomena may be explained by the different contribution of the friction force due to
the vapor. In the first case this force is dominant, whereas in the second one its effect is negligible.

Fig. 7. Dependence of liquid velocity �uu2:st and meniscus location ~xxf :st versus Peclet number and parameter A (semi-filled

regime): (a) u002:stðPeÞ; ~xxf :stðPeÞ, (b) u002:stðAÞ; ~xxf :stðAÞ.
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Fig. 9. Diagram of steady states: I and III––domains of existence of single solution, II––domain of existence of three

solutions (two stable and one unstable), Lines A1 and A2 correspond to two stable solutions.

Fig. 8. Solution of Eq. (47) at ~ll  1.
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7. Results and discussion

The numerical calculations of the liquid velocity and the meniscus position were carried out for
the various wall heat flux qw, the acceleration due to gravity g, as well as the length and the
diameter of the microchannel in the ranges (200 < qw < 2000Þ W/m2, ð5 < g < 45Þ m/s2,
ð0:015 < L < 0:05Þ m, ð0:1 < d < 2Þ 10�4 m. The change of the flow velocity and meniscus po-
sition versus heat flux is illustrated by Fig. 11. An increase in qw is accompanied by a decrease in
the xf:st and growing of the outlet u2:st. The sharp change of xf:st and u2:st is observed at relatively
small heat fluxes when the meniscus is located at a away from the inlet and heat losses are neg-
ligible. In this case all the energy which is supplied to the liquid is used for its evaporation so that
its velocity is directly proportional to qw. The character of the process changes qualitatively when

Fig. 10. Three-dimensional diagram of steady states: I and III––domains of existence of single solution, II––domain of

existence of three solutions (two stable and one unstable), Boundary surfaces correspond to two stable solutions.

Table 1

Regime Parameter Number of stationary states Stability

~ll A

Semi-filled ~ll � 1 0 < A < 1 One Stable

Filled ~ll  1 0 < A < A1 One Stable

A1 < A < A3 Three Two stable, one unstable

A ¼ A1 Two Stable

A ¼ A3
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qw is much greater. When the meniscus approaches the inlet cross-section, the heat losses became
significant, because they are proportional to ðT s � 1Þ=~xxf . In this case an increase in qw is
accompanied by an increase in the heat losses to the inlet and practically has no effect on the liquid
velocity.

The effect of the acceleration due to gravity on the steady state liquid velocity and the meniscus
position is shown in Fig. 12. An increase in g is accompanied by the displacement of the meniscus
toward the inlet and a decrease in the liquid velocity.

Fig. 13 illustrates the effect of the microchannel length on u2:st and xf :st. It may be seen, that an
increase in the microchannel length is accompanied by a monotonous decrease in xf:st, whereas the
function u2:stðLÞ has a maximum. Such a type of dependence of u2:stðLÞ is due to opposite features:
(a) the growth of the friction forces with L; (b) the growth of the total heat flux to the liquid.
When L is relatively small the increase in the total heat flux plays the dominant role, which leads
to an increase in the liquid velocity. When L is large enough, the hydraulic resistance of the vapor
region is dominant. Its growth leads to the displacement of the meniscus towards the inlet, the
increase in the heat losses and the decrease in the liquid velocity.

The graphs of the functions u2:stðdÞ and xf:stðdÞ are plotted in Fig. 14. Both curves have rising
and falling branches and accordingly characteristic maximum at certain (depending on the curve)
value of the microchannel diameter. When d > 1� 10�4 m the liquid velocity is inversely pro-
portional to d. Within this regime an increase in the microchannel diameter leads to a significant
decrease in the friction force, as well as the forces due to the surface tension. Under these con-
ditions the length of the liquid region is shortened. The situation changes qualitatively when xf:st is
small enough and heat losses play significant role. In this case the growth of u2:st with d takes
place.

Fig. 11. Stable liquid velocity and meniscus location versus heat flux on the microchannel wall (L ¼ 2� 10�2 m,

d ¼ 10�4 m, g ¼ 9:8 m/s2).
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8. The efficiency of the cooling system

The total energy, which is supplied to the liquid from the wall, is equal to the heat flux qw,
multiplied by the lateral area of the microchannel: pdLqw. The energy, which is expended to the
liquid vaporization, is equal to the latent heat of evaporation qe, multiplied by the mass liquid
flow-rate through a cross-section of the microchannel, and is equal q2u2ðpd2=4Þqe.

Fig. 12. Stable liquid velocity andmeniscus location versus gravity acceleration (L¼ 2� 10�2 m, d ¼ 10�4 m, qw ¼ 200 W
m2).

Fig. 13. Liquid velocity and the location of the meniscus versus capillary length (d ¼ 10�4 m, g ¼ 9:8 m/s2, qw ¼ 200 W
m2).
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The effect of the heat losses to the inlet, on the thermal states of the microchannel, depends
mainly on the meniscus position which is determined by the flow parameters. To characterize this
effect, the coefficient of efficiency is introduced; it may be defined as the ratio of the energy ex-
pending to the liquid vaporization and the total energy supplied to the microchannel.

g ¼ q2u2dqe
4qwL

ð51Þ

Since the coefficient of efficiency depends on the location of the meniscus, it is different for semi-
filled and filled regimes.

In a steady state, two-phase flow in a heated capillary, there is the balance of forces, which act
on the liquid and its vapor. The analysis of this balance shows, that there are two stable states of
the flow. They correspond to the different locations of the meniscus, which separates the liquid
and the vapor. The existence of such states may be explained by the changes in the values of the
different components in the balance equation. When the meniscus is near the outlet, the gravity
and the surface tension play the main role, whereas the friction forces of the liquid and the vapor
are negligible. In contrast, when the meniscus is near the inlet, the friction and surface tension
forces are the main ones.

The position of the meniscus within the microchannel defines the type of the temperature
distribution. In the first case, when the meniscus is near the outlet, the temperature gradient of the
vapor region is small. The rate of evaporation is determined mainly by the heat flux in the liquid
region. Therefore, the necessary condition of the evaporation consists of the existence of the
region (near the meniscus), where the water is overheated (its temperature is higher then the
temperature of boiling). The heat losses to the inlet tank cause the existence of the temperature
maximum.

Fig. 14. Liquid velocity and meniscus location versus capillary diameter (¼ 2� 10�2 m, g ¼ 9:8 m/s2, qw ¼ 200 W
m2).
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When the meniscus is near the inlet of the microchannel, the heat losses increase, because the
gradient of the temperature is greater.

Thus, there are two meniscus positions near the edges of the microchannel, where the heat
losses are significant. Between them there is some position, in which these losses are minimal and

Fig. 15. Efficiency of cooling system (friction regime): (a) coefficient of efficiency versus heat flux, (b) coefficient of

efficiency versus gravity, (c) coefficient of efficiency versus capillary length, (d) coefficient of efficiency versus capillary

diameter.
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the evaporation is the most intensive. This corresponds to the optimal efficiency of the cooling
system.

The effect of various parameters on the efficiency coefficient is illustrated in Fig. 15(a)–(d). It
may be seen, that an increasing of heat flux on the wall leads to a significant decrease in g. It is due
to the meniscus displacement towards the inlet and growth of heat losses into the cooling liquid.
The calculations show (Fig. 15(a), (c)) that for given values of parameters there is some ‘‘optimal’’
values of microchannel’s diameter and length, at which the coefficient of efficiency reaches
maximum.

9. Conclusions

A theory of two-phase laminar flow with a distinct interface has been developed. Although this
theory is based on a one-dimensional approximation, it takes into account the major features of
the process: the inertia, gravity, surface tension and friction forces. Thus this study may be ex-
pected to give the physically realistic pattern of a laminar flow in a heated microchannel. This
allows one to use the present theory to study the regimes of flow, as well as optimizing a cooling
system of electronic devices with high power densities.

Partial results are as follows:

1. The problem of a flow in a heated microchannel with distinct interphase is formulated.
To calculate the flow parameters under the conditions when the meniscus position and the
liquid velocity at the inlet are unknown ‘a priori’. The mass, momentum and energy equations
are used for both phases, as well as the balance conditions at the interphase. The integral
condition which connects flow parameters at the inlet and the outlet cross-sections is derived.

2. The analytical solution of the problem is obtained.
It is shown that the rate of vaporization (the liquid’s velocity), the liquid and vapor tempe-
ratures, the position of the meniscus in the microchannel, its hydraulic resistance and the
thermal losses are determined by eight non-dimensional groups, accounting for the effects of
heat transfer, phase change, as well as inertia, friction, surface tension and gravity forces. The
number of such non-dimensional groups may be reduced to 4 by introducing a general pa-
rameter: the capillary height, which depends on the Weber, Froude and Euler numbers.

3. The parametrical analysis of the problem was done. The classification of possible regimes of
flow are proposed. It is based on non-dimensional parameter accounting for the ratio of the
microchannel length to the capillary height. It is shown that in the generic case the governing
system of equations that describes capillary flow has three stationary solutions: two stable and
one (intermediate)––unstable.

4. It is shown, that an increase in the heat flux is accompanied by an increase in the liquid and
vapor velocities, the meniscus displacement towards the outlet cross-section, as well as growth
of vapor to liquid forces ratio and heat losses. When qw is large enough, the difference between
the intensity of heat transfer and heat losses are limited by some final value which determines
the maximum rate of vaporization. Accordingly, when qw is large all characteristic parameters
are practically invariable.
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5. It is shown that the existence of two stable states (at given values of the operating parameters) is
due to the dominant role of the gravity or friction forces at the various meniscus positions. A
decrease in the gravity leads to the displacement of the meniscus toward the outlet and to a de-
crease in the heat losses and an increase in the liquid and vapor velocities. A decrease in the
microchannel diameter leads to a monotonous increase in the liquid and vapor velocities,
whereas the dependence of the meniscus position versus d has an extremum.

6. At given values of the parameters, there are optimal values of the microchannel diameter and
length, which correspond to a maximum efficiency coefficient.
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Appendix A. The dependence between the saturation pressure and temperature

The dependence of the saturation pressure P1:s and temperature Ts the for several liquids is
determined by Antoine equation (Reid et al., 1987). We use the following expression for water and
its vapor under atmospheric pressure (Seaver et al., 1989):

Ps ¼ a0 þ ts½a1 þ tsða2 þ tsfa3 þ ts½a4 þ tsða5 þ a6tsÞ�gÞ�; ðA:1Þ
where

a0 ¼ 6:107799961� 10�2; a1 ¼ 4:436518521� 10�3; a2 ¼ 1:428945805� 10�4;

a3 ¼ 2:650648731� 10�6; a4 ¼ 3:031240396� 10�8; a5 ¼ 2:034080948� 10�10;

a6 ¼ 6:136820929� 10�13;

t is measured in Celsius.
From Eq. (A.1) it follows that

dTs
dPs

¼ 1

a1 þ tsð2a2 þ tsf3a3 þ ts½4a4 þ tsð5a5 þ 6a6tsÞ�gÞ
For ts ¼ 100 �C

dTs
dPs

¼ 2:6859� 10�4

for ts ¼ 200 �C
dTs
dPs

¼ 2:4066� 10�5

This shows that Ts changes weakly with the pressure. This allows us to neglect the dependence
of the hydraulic resistance of the vapor on the saturation temperature Ts and assume that it is
determined by the external pressure P1:00.
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Appendix B. Integral relations

(A) Integrating Eq. (2) from 0 to xfð�Þ we obtainZ xf

0

oq2

ot

�
þ oq2u2

ox

�
dx ¼ o

ot

Z xf

0

q2 dx� q2:f

dxf
dt

þ fðq2u2Þf � ðq2u2Þ0g ¼ 0 ðB:1Þ

Integrating Eq. (2) from xfðþÞ to L yieldsZ L

xf

oq1

ot

�
þ oq1u1

ox

�
dx ¼ o

ot

Z L

xf

q1 dxþ q1:f

dxf
dt

þ fðq1u1Þ00 � ðq1u1Þfg ¼ 0 ðB:2Þ

Summing Eqs. (B.1) and (B.2) we get

o

ot

Z xf

0

q2 dx
�

þ
Z L

xf

q1 dx
�
þ ðq1 � q2Þf

dxf
dt

þ f½ðq2u2Þf � ðq2u2Þ0� þ ½ðq1u1Þ00 � ðq1u1Þf �g ¼ 0

ðB:3Þ
From Eq. (11) it follows that

ðq1u1 � q2u2Þf ¼ ðq1 � q2ÞfVf ¼ ðq1 � q2Þf
dxf
dt

ðB:4Þ

Then Eq. (B.3) takes the following form

o

ot

Z xf

0

q2 dx
�

þ
Z L

xf

q1 dx
�
þ ðq1:00u1:00 � q2:0u2:0Þ ¼ 0 ðB:5Þ

(B) Multiplying Eq. (2) by ui and summing that equation with Eq. (3) we obtain the equation

oqiui
ot

þ oqiu
2
i

ox
¼ � oPi

ox
� qig �

oFi
ox

ðB:6Þ

Integrating Eq. (B.6) from 0 to xf and from xf to L yields

o

ot

Z xf

0

q2u2 dx� ðq2u2Þf
dxf
dt

þ fðq2u
2
2Þf � ðq2u

2
2Þ0g ¼ ðP2:0 � P2:fÞ � g

Z xf

0

q2 dx� F2:f ðB:7Þ

o

ot

Z L

xf

q1u1 dxþ ðq1u1Þf
dxf
dt

þ ðq1u
2
1Þ00

�
� ðq1u

2
1Þf
�
¼ ðP1:f � P1:00Þ � g

Z L

xf

q1 dx� F1:00 ðB:8Þ

Note that we account for that F2:0 � 0, F1:f � 0 in Eqs. (B.7) and (B.8). Summing Eqs. (B.7) and
(B.8), we obtain

o

ot

Z xf

0

q2u2 dx
�

þ
Z L

xf

q1u1 dx
�
þ ðq1u1 � q2u2Þ

dxf
dt

þ ðq2u
2
2Þf

�
� ðq2u

2
2Þ0 þ ðq1u

2
1Þ00 � ðq1u

2
1Þf
�

¼ ðP2:0 � P2:f þ P1:f � P1:00Þ � g
Z xf

0

q2 dx
�

þ
Z L

xf

q1 dx
�
� ðF2:f þ F1:00Þ ðB:9Þ

Using the conditions (12) and (13), we transform Eq. (B.9). Taking into account Eq. (B.4), we
rewrite (13) as follows
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ðq1u
2
1 � q2u

2
2Þf ¼ fL � ðP1 � P2Þf þ ðq1 � q2Þf

dxf
dt

� �2

ðB:10Þ

Then Eq. (B.9) takes form

o

ot

Z xf

0

q2u2 dx
�

þ
Z L

xf

q1u1 dx
�

¼ fL � ½ðq1u
2
1Þ00 � ðq2u

2
2Þ0� þ ðP2:0 � P1:00Þ

� g
Z xf

0

q2 dx
�

þ
Z L

xf

q1 dx
�
� ðF2:f þ F1:00Þ ðB:11Þ

(C) Rewrite Eq. (4) in the following form and integrate this equation from 0 to xf and from xf
to L:

o

ot

Z xf

0

q2h2 dx� ðq2h2Þf
dxf
dt

þ fðq2h2u2Þf � ðq2h2u2Þ0g ¼ k2

oT2
ox

� �
f

� k2

oT2
ox

� �
0

þ qxf

ðB:12Þ
o

ot

Z L

xf

q1h1 dxþ ðq1h1Þf
dxf
dt

þ fðq1h1u1Þ00 � ðq1h1u1Þfg

¼ k1

oT1
ox

� �
00

� k1

oT1
ox

� �
f

þ qðL� xfÞ ðB:13Þ

Summing Eqs. (B.12) and (B.13) we find

o

ot

Z xf

0

q2h2 dx
�

þ
Z L

xf

q1h1 dx
�
þ ðq1h1 � q2h2Þf

dxf
dt

þ fðq2h2u2Þf � ðq2h2u2Þ0 þ ðq1h1u1Þ00 � ðq1h1u1Þfg

¼ k2

oT2
ox

� �
f

� k2

oT2
ox

� �
0

þ k1

oT1
ox

� �
00

� k1

oT1
ox

� �
f

þ qL ðB:14Þ

Using Eq. (14) we obtain

o

ot

Z xf

0

q2h2 dx
�

þ
Z L

xf

q1h1 dx
�
þ fðq1h1u1Þ00 � ðq2h2u2Þ0g

¼ �k2

oT2
ox

� �
0

þ k1

oT1
ox

� �
00

þ qL ðB:15Þ

Appendix C. Analysis of the equations

(1) Let us transform the momentum Eq. (43) to the form:

�uu02 ¼ A
1� ~xxf
B� ~xxf

ðC:1Þ
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where

A ¼ Re
32FrLðm12 � 1Þ

; B ¼ eLL m12
m12 � 1

; ~xxf ¼ �xxf=X fcap; ~ll ¼ L=X fcap:

If the pressure is moderate (P < 106 Pa), the ratio of the kinetic viscosities of the vapor and the
liquid m12 has the order of 70 (Johnson, 1998). The curve �uu02ð~xxfÞ is a hyperbola with the horizontal
asymptote �uu02 ¼ A and the vertical one ~xxf ¼ B (Fig. 4(a)). The physical meaning has only the sector
of lower branches of the hyperbola, which is between the lines ~xxf ¼ 0 and ~xxf ¼ 1. It corresponds to
the position of the meniscus inside the microchannel.

(2) Now let us consider the energy Eq. (44). To reveal the shape of the curve �uu002ð~xxfÞ we consider
its intersection with the lines �uu002 ¼ const. Write down Eq. (44) as follows:

�uu002

 
� 1þ 1

Pe�uu002

!
exp PeX fcap~xxf�uu002

� �h
� 1
i
¼ X fcap~xxf � �qq2�uu002ðT s � 1Þ ðC:2Þ

The r.h.s. of Eq. (C.2): R is the linear function of �xxf . An increasing of �uu002 leads to the displacement
of these lines downwards. The l.h.s. of Eq. (C.2): L is non-linear function of ~xxf . Its sign depends on
sign of the multiplier ð�uu002 � 1þ ð1=Pe�uu002ÞÞ i.e. on the determinant D ¼ ð1=4Þ � ð1=PeÞ. There are
three cases: D < 0, D ¼ 0, D > 0.

(a) D < 0 ðPe < 4Þ. In this case �uu002 � 1þ ð1=Pe�uu002Þ > 0. Since the expression in square brackets is
positive, the l.h.s. of Eq. (C.2) is also positive (Fig. 5(a)). The derivatives of functions in l.h.s. and
r.h.s. of Eq. (C.2) at the point ~xxf ¼ 0 equal respectively

L0 ¼ X fcap þ PeX fcapð�uu002 � 1Þ�uu002 ðC:3Þ
R0 ¼ X fcap ðC:4Þ

Since �uu002 < 1 then R0 > L0. That means, that depending on value of �uu002 there are one or two in-
tersection points of the curves Lð~xxfÞ and Rð~xxfÞ. Under certain conditions the intersection points are
absent. Thus, the curve �uu002ð~xxfÞ has the shape as shown in Fig. 5(a).

(b) D ¼ 0 (Pe ¼ 4, �uu002 ¼ 1
2
). In this case there is a single intersection point of the curve �uu002 with

the axis of abscissa ~xxf ¼ ð�qq2ðT s � 1ÞÞ=2X fcap (Fig. 5(b)).
(c) D > 0 (Pe > 4). When �uu002 change within the range 1

2
�

ffiffiffiffi
D

p
6 �uu002 6

1
2
þ

ffiffiffiffi
D

p
, Lð~xxfÞ decreases

with the increasing of ~xxf . In this case there is one intersection point (Fig. 5(c)). When 0 < �uu002 <
1
2
�

ffiffiffiffi
D

p
or 1

2
þ

ffiffiffiffi
D

p
< �uu002 < 1 i.e. �uu002 � 1þ ð1=Pe�uu002Þ > 0 and there are two intersection points as it is

shown in Fig. 5(a).
Now we find intersection points of the curve �uu002ð~xxfÞ with the abscissa axis. Assuming in Eq. (B.2)

�uu002 ! 0 (at finite �xxf ), we obtain

ð~xxfÞ1;2 ¼
1

X fcap

� 1

X fcap

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

�qq2ðT s � 1Þ
Pe

s
ðC:5Þ

The dependances �uu002ð~xxfÞ for various Pe are plotted in Fig. 4(b). The shape of these curves sig-
nificantly depends on the value of the Peclet number. When Pe < 4 the raising and the falling
branches of �uu002ð~xxfÞ contain points ð~xxfÞ1 and ð~xxfÞ2 on the abscissa axis and form canopy-shape

1614 L.P. Yarin et al. / International Journal of Multiphase Flow 28 (2002) 1589–1616



curves with characteristic maximum depending on Pe. Contrary to that if PeP 4, the curves �uu002ð~xxfÞ
are not continuous. When ~xxf is large, the upper and lower branches have one ðPe ¼ 4Þ or two
ðPe > 4Þ asymptotes.
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